| Name: |  | HW: | Exponential |
|-------|--|-----|-------------|
|-------|--|-----|-------------|

Determine whether the following scenarios would be best modeled using a linear or exponential model. Then, write an equation.

- Ms. Hunter takes off 10 points for each day an assignment is turned in late. The assignments are worth 100 points each.
  - There are 200 ladybugs in a certain population. The population is decreasing by 14% per day.
  - Your salary starts at \$23000 and goes up by 5% per year.
  - A painter is going to charge \$90 for paint and \$35 an hour to paint your kitchen.

- Given the situations below, identify if it is a linear or exponential model or neither. Explain your reasoning.
  - a. A savings account that starts with \$5000 and receives a deposit of \$825 per month.
  - b. The value of a house that starts at \$150,000 and increases by 1.5% per year.
  - c. Tina owns 4 rabbits. She expects them to double each year.
  - d. The cost of operating Jelly's Doughnuts is \$1600 per week plus \$.10 to make each doughnut.
  - e. The value of John's car that depreciates 20% per year
  - f. The height of a ball that is thrown in the air
- 3. Which situation could be modeled with an exponential function?
  - (1) the amount of money in Suzy's piggy bank which she adds \$10 to each week
  - (2) the amount of money in a certificate of deposit that gets 4% interest each year
  - (3) the amount of money in a savings account where \$150 is deducted every month
  - (4) the amount of money in Jaclyn's wallet which increases and decreases by a different amount each week

## Part II - Exponential Growth & Decay Applications

4. The rent for an apartment was \$6,600 per year in 2012. If the rent increased at a rate of 4% each year thereafter, use an exponential equation to find the rent of the apartment in 2017.

5. The population of a town was 14,000 in 2010. If the population decreased at a rate of 1.5% each year thereafter, use an exponential function to find the population after 10 years.

Graph each exponential function using a table, then identify its key characteristics.



a:

stretch/shrink/neither Growth / Decay

Domain: \_\_\_\_

Range: \_\_\_\_\_

y-intercept: \_\_\_\_

Asymptote: \_\_\_\_

$$\Im \cdot f(x) = 6 \cdot \left(\frac{1}{3}\right)^x + 2$$



Growth / Decay

Domain: \_\_\_\_

Range: \_\_\_

y-intercept:

Asymptote: \_\_

$$y = 3^x - 4$$



y-intercept: \_\_\_\_\_

Asymptote: \_\_\_\_



a:

6:

n:

K:



Domain:

Range:

y-intercept:

Asymptote: \_\_\_\_\_

$$(0. y = \frac{3}{2} \cdot 2^x + 1)$$

0:

b:

K:



Strutch/Shrink/neither Growth / Decay

Domain: \_

Range: \_\_\_\_

y-intercept:

Asymptote:

## Topic 6: Exponential Growth & Decay Applications

## **EXPONENTIAL GROWTH FUNCTION**

**EXPONENTIAL DECAY FUNCTION:** 

11. 4=

12.4:

A population of a city is 422,000 and increases by 12% each year. Use an exponential function to find the population of the city after 8 years.

A car bought for \$13,000 depreciates at 15% per year. Use an exponential function to find the value of the car after 5 years.

Scott purchased a painting in 2006 for \$1,250. Since then, its value has increased by 6% each year. Use an exponential function find the value of the painting in 2017.