Exponential vs. Linear Functions Notes Part I – Graphing Exponential Functions

Directions: Graph each exponential function by creating a table and identifying its key characteristics.

							Y	
							9	
х	У			_	_		-8-	
		- -						
			++			_	-6	
		-	++	+			-5	
		-					-4	+
		_		+	_		-3	+
		_	+				-2	+
		-	+	+		++		+
		-	-9 -8			-3 -2	1 0	1 2
			-9 -0	-/ -0	-5 -4	-3 -2	-1-1	
							-2	++
		-		++				++
				+			-4	++
		-		++				++
		-		+			-6	++
				-				++
		-				_	-8	++
		-	++		+		-9	++
		L						

2. $y = 2^x + 6$	stretch/shrink/neither
	growth/decay
a:	domain:
b:	range:
h:	y-intercept:
k:	Asymptote:

3. <i>y</i> =	$= 8 \cdot \left(\frac{1}{4}\right)^x - 1$	stretch/shrink/neither	
		growth/decay	
	a:	domain:	

b:	
h:	
k:	

growth/decay domain: _____ range: _____ y-intercept: _____ Asymptote: ______

х	У

х

Review of Exponential Growth/Decay Word Problems:

4. The Mendez family just bought a home for \$180,000. If the value of the home increases at a rate of 3% per year, use an exponential function to find the approximate value of the home after 10 years.		5. Doug purchased land for \$8,000 in 1995. The value of the land depreciated by 4% each year thereafter. Use an exponential function to find the approximate value of the land in 2002.		
A. \$258,000	B. \$250,000	A. \$5,760	B. \$5,771	
C. \$242,000	D. \$234,000	C. \$6,012	D. \$6,262	

Part II – Linear vs. Exponential Functions

Exponential Functions: $y = a \cdot b^{x-h} + k$ or $f(x) = a \cdot b^{x-h} + k$

- Shows growth/decay at consecutive intervals
- Looks like a normal or backwards "L" or "r" graphically
- Key words: increasing, decreasing, lost, depreciate

<u>Linear Functions</u>: y = mx + b

- Shows a constant rate of change
- Looks like a straight line graphically
- Key words: each
- 6. Decide whether the word problem represents a linear or exponential function. Circle either linear or exponential. Then write the function formula.

a) A library has 8000 books and is adding 500 more books each year.

linear or exponential

y = _____

y = _____

b) A gym's customers must pay \$50 for a membership, plus \$3 for each time they use the gym.

linear	or	exponential
--------	----	-------------

c) A bank account starts with \$10. Every month, the amount of money in the account is tripled.

linear or exponential y = _____

d) At the start of a carnival, you have 50 ride tickets. Each time you ride the roller coaster, you have to pay 6 tickets.

linear or exponential y = _____

e) There are 20,000 owls in the wild. Every decade, the number of owls is halved.

linear or exponential

y = _____