\qquad Period: \qquad

Arithmetic Sequence: A sequence of terms that have a common difference between them.

- Formula: $\boldsymbol{a}_{\boldsymbol{n}}=\boldsymbol{a}_{\mathbf{1}}+\boldsymbol{d}(\boldsymbol{n}-\mathbf{1})$ where a_{1} is the $1^{\text {st }}$ number in the sequence and d is the common difference.

Geometric Sequence: A sequence of terms that have a common ratio between them.

- Formula: $\boldsymbol{a}_{\boldsymbol{n}}=\boldsymbol{a}_{\mathbf{1}}(\boldsymbol{r})^{\boldsymbol{n - 1}}$ where a_{1} is the $1^{\text {st }}$ number in the sequence and r is the common ratio.

Are the following sequences arithmetic or geometric? If they are arithmetic, stated the value of d. If they are geometric, state the value of r.

1. $6,12,18,24, \ldots$
2. $6,11,16, \ldots$
type: \qquad d or r : \qquad
3. $2,14,98,686$, ...
type: \qquad dor r : \qquad
4. $160,80,40,20, \ldots$
type: \qquad d or r : \qquad
5. $-40,-25,-10,5, \ldots$
type: \qquad dor r : \qquad
6. $7,-21,63,-189, \ldots$
type: \qquad d or r : \qquad

For the following sequences, find a_{1} and d and state the formula for the general term.
7. $-10,-4,2,8,14, \ldots$
$a_{1}=$ \qquad $d=$ \qquad Formula:
8. $10,8,6,4, \ldots$
$a_{1}=$ \qquad $d=$ \qquad Formula:
9. $36,31,26,21, \ldots$
$a_{1}=$ \qquad $d=$ \qquad Formula:
10. Use the formula from \#9 to find the seventh term and the $20^{\text {th }}$ term.

For the following sequences, find a_{1} and r and state the formula for the general term.
11. $4,20,100,5000, \ldots$ \qquad $r=$ \qquad Formula:
12. $3,-6,12,-24,48, \ldots$
$a_{1}=$ \qquad $r=$ \qquad Formula:
13. 1, 3, 9, 27, ...

$$
a_{1}=
$$

\qquad Formula:
14. Use the formula from question \#13 to find the value of the fifth term and the twelfth term.

